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Abstract—Formal models are often considered for software 
systems specification, and are helpful for verifying that certain 
properties are respected, or for automatically generating the 
implementation code corresponding to the model, or again for 
conformance testing, for the automatic generation of test cases 
to check an implementation against the formal specification. 
Variations of Finite State Machine (FSM) models have been 
mostly used for conformance testing, while the otherwise very 
popular formal model of Petri Nets is seldom mentioned in this 
context. In this paper, we look at the question of conformance 
testing when the model is provided in the form of a 1-safe Petri 
Net. We provide a general framework for conformance testing, 
and give algorithms for deriving test cases under different 
assumptions: Besides the adaptation of methods originally 
developed for FSMs which lead to exponentially long test 
sequences, we have identified cases for which polynomial 
testing algorithms for free-choice Petri nets can be provided. 
These results are significant when modeling concurrent 
systems, as exemplified by workflow modeling.  

Conformance testing, fault model, 1-safe Petri nets, free-
choice Petri nets, automatic test generation 

I.  INTRODUCTION 

Software systems are notoriously incorrect, a problem 
that only gets worst when dealing with distributed systems. 
In order to help producing better systems, one common 
suggestion is to create a formal model of the specification of 
the system, and then test whether a given implementation 
conforms to the specification, for some suitable definition of 
conformance. Ideally the tests are automatically generated 
based on the formal specification. This kind of approach has 
been mostly researched using Finite State Machines (FSM) 
as the formal model (see e.g. [1] for a survey). More 
recently, the same questions have been asked for concurrent 
systems, for which FSM do not offer a good model. When 
modeling concurrent systems with FSMs for test generations, 
multi-ports FSM [2,3] and Partial Order Input/Output 
Automata [4] have been used. When modelling concurrent 
systems in general, a popular formalism among researchers 
are Petri Nets (see e.g. [5] for a survey). Surprisingly, little 
has been done in the area of conformance testing of systems 
specified as Petri Nets, even through Petri Nets have long 
been used in practice and have for example influenced the 
design of some UML schema and have been used as a basis 
for workflow modeling [6]. Other formalisms beside the 
already mentioned FSMs have been used in the context of 
testing distributed systems (for example for Labeled 

Transition Systems [7] or Message Sequence Charts [8]), but 
in this context Petri Nets have mostly been used for fault 
diagnosis (see e.g. [9]). An interesting classification of 
testing criteria for Petri nets was provided by Zhu and He 
[10], but without testing algorithms. 

In this paper, we investigate the question of automatically 
testing Petri Nets, to ensure that an implementation of a 
specification provided as a Petri Net is correct. We focus on 
1-safe Petri Nets, that is, Petri Net for which a place never 
holds more that one token, and on free-choice Petri Nets. 
This model is well suited for workflows [6], which is our 
target application. Thus, the traditional transitions of Petri 
Nets are seen as tasks of a workflow. In this context, we 
provide a precise fault model, capturing what kind of 
changes could make a candidate implementation not 
conforming to the specification: some of the specified flow 
constraints between the tasks may be missing, or some 
unspecified flow constraints between tasks may be added. 
free-choice Petri nets are also useful to model for example 
flows in networks of processors [11]. We provide a precise 
framework for the conformance question in Section II C. We 
then provide our main results, our testing algorithms, in 
Section III. We first show that testing Petri Nets can be 
reformulated as a special case of FSM testing. This approach 
makes sense since FSM testing has been so extensively 
studied. Unfortunately, the complexity of the transformation 
of a Petri Net into an FSM is exponential in the worst case. 
We then study some particular cases for 1-safe free-choice 
Petri nets, for which a polynomial testing algorithm can be 
proposed. In Section III B., we provide a polynomial-time 
algorithm to test implementations that have only missing 
flow constraints between tasks. We also provide a 
polynomial-time algorithm for testing implementations with 
only additional input flows between tasks in Section III C. 1). 
We show in Section III C. 2) that the problem is more 
difficult for additional output flows. We conclude in Section 
IV. The basic concepts and definitions are introduced in 
Section II. 

II. BASIC CONCEPTS AND ASSUMPTIONS 

In this section, we give the definition of Petri Nets and 
we explain the assumptions that we make about testing 
environment. 

 

A. Petri nets 



Definition 1: Petri Nets, input/outputs, traces, executable 
sets, markings. A Petri Net is a 4-tuple N=(P,T,F,M0) 
where P is a finite set of places, T is a finite set of 
transitions (or tasks in our context), F  (PT)(TP) is a 
set of arcs (the flows in our context). A marking is a 
mapping from P to the natural numbers, indicating the 
number of tokens in each place. We write M0  for the initial 
marking of the net. For a task tT, we note 
t={pP|(p,t)F} the set of inputs of t, and 
t={pP|(t,p)F} the set of outputs of t. Similarly, for a 
place pP, we note p={tT|(t,p)F} and 
p={tT|(p,t)F}. 
A task t is enabled for execution if all inputs of t contain at 
least one token. When a task is executed the marking 
changes as follows: The number of tokens in all inputs of t 
decreases by one, and the number of tokens in all outputs of 
t increases by one. A trace of a Petri Net is a sequence of 
tasks that can be executed starting from the initial marking 
in the order indicated, without executing any other tasks. An 
executable set of tasks is a multiset of tasks whose task 
elements can be sequenced into a trace. Clearly, for each 
trace there is a unique executable set, but several traces may 
correspond to the same executable set, in which case we say 
that the traces are equivalent. A marking of a trace t is the 
marking obtained after the execution of t from the initial 
marking. We say that t marks P if the place P contains at 
least one token in the marking of t. 

Definition 2: Petri Net equivalence. Two Petri Nets 
PN1=(P1,T1,F1,M10) and PN2=(P2,T2,F2,M20) are said to be 
equivalent if ,T1 =T2 and they have the same set of traces. 

Definition 3: Free-choice Petri Nets. A Petri Net 
PN=(P,T,F,M0) is free-choice if and only if for all places p 
in P, we have either | p| < 2 or  ((p)) = {p}. 

Definition 4: 1-Safeness (k-safeness). A marking of a Petri 
Net is 1-safe (resp. k-safe) if the number of tokens in all 
places is at most one (resp. k). A Petri Net is k-safe if the 
initial marking is k-safe and the marking of all traces is k-
safe. (Note: We consider in this paper only 1-safe Petri 
Nets).  

Proposition 1: In a 1-safe free-choice Petri Net 
PN=(P,T,F,M0), if for some task tT and some place pP 
such that pt and |t|>1, there is no trace that marks (t)\p 
but not p then removing the input (p,t) from F defines a 
Petri Net PN’ which is equivalent to PN.  

Proof: Let PN=(P,T,F,M0) be a 1-safe free-choice Petri 
Net, let tT be a task of PN and pP a place of PN such 
that p is in t, |t|>1  and there is  no trace of PN that  
marks (t)\p but not p. Let PN’ be the Petri Net obtained by 
removing (p,t) from F in PN. We show that PN’ is 
equivalent to PN. Suppose they were not equivalent, that is, 

PN and PN’ do not have the same set of traces. Since we 
have only removed a constraint from PN, clearly every trace 
of PN is also a trace of PN’, therefore PN’ must accept 
traces that are not accepted by PN. Let Tr be such a trace. 
Since the only difference between PN and PN’ is fewer input 
flows on t in PN’, necessarily t is in Tr. Two situations 
might occur: either Tr is not a trace of PN because an 
occurrence of t cannot fire in PN (i.e. t is not marked at 
that point in PN), or another task t’ can fire in PN’ but not 
in PN. In the former case, because we have only removed 
(p,t), it mean that (t)\p is marked but t is not, a 
contradiction with the hypothesis. In the latter case, if t’ can 
fire in PN’ but not in PN then t’ must be marked in PN’ 
and not in PN. Again, the only difference being t not 
consuming a token in p in PN’, it follows that t’ can use that 
token in PN’ but not in PN. In other words, pt’, but then 
|p|>1 and thus (p) = {p} (PN is free-choice), a 
contradiction with |t|>1. 

Proposition 2: In a 1-safe Petri Net PN=(P,T,F,M0), for 
any tasks t, t’T and for any place pP such that pt and 
pt’, if there is a trace Tr of PN containing both t and t’, 
with t occurring before t’ in Tr, then there is a task t″T in 
Tr (possibly t″ =  t’) that consumes the token put in p by t.  

Proof: (immediate from the definition)  When Tr comes to 
executing t’, if the token that must be present in p is not the 
one put there by t then, because of 1-safety,  necessarily the 
token put by t has already been consumed by some task t″. 
 

B. Assumptions about the specification, implementation 
and testing environment 

We assume that the specification of the system under test 
is provided in the form of a 1-safe Petri Net. Moreover, we 
assume that there is a well identified initial marking (initial 
state). The goal of our test is to establish the conformance of 
the implementation to the specification, in the sense of trace 
equivalence defined in Definition 2. 

For the system under test, we make the assumption that 
can be modeled as a 1-safe Petri Net. In addition, we make 
one of the following assumptions: (a) that the number of 
reachable markings in the implementation is not larger than 
in the specification, or (b) that the number of transitions 
(tasks) in the implementation is not larger than in the 
specification. Assumption (a) corresponds to a similar 
restriction commonly made for conformance testing in 
respect to specifications in the form of state machines, where 
one assumes that the number of states of the implementation 
is not larger than the number of states of the specification. 
Without such an assumption, one would not be sure that the 
implementation is completely tested, since some of the 
(implementation) states might not have been visited. If one 
wants to avoid this assumption, it is possible to assume that 
the number of markings in the implementation does not 
exceed the number of markings in the specification by more 
than some upper bound k, however, we do not address this 
question in this paper.  



Regarding the testing environment, we assume that the 
system under test provides an interface which provides the 
following functions:  

 At any time, the tester can determine which 
transitions are enabled.  

 The tester can trigger an enabled transition at will. 
Moreover, transitions will only be executed when 
triggered through the interface.  

 There is a reliable reset, which bring the system 
under test into what corresponds to the initial 
marking. 

 
A good example of applications compatible with these 

assumptions are Workflow Engines. Workflow processes are 
usually specified by some specification language closely 
related to Petri Nets. Workflow engines are used to specify 
(and then enforce) the flow of tasks that are possible or 
required to perform for a given activity. In that setting, the 
set of possible tasks is well known, and a given task can be 
initiated if and only if the set of tasks that directly precede 
are finished. In a computer system, it typically means that at 
any time, the set of tasks that can be performed are enabled 
(accessible from the user interface) while the tasks that 
cannot be performed are not visible. It is thus possible to 
know what tasks are enabled, and choose one of them to be 
performed. In [6], workflow are modeled using 1-safe Petri 
nets. 

 

C. Fault Model 

We assume that the difference between the system under 
test and the reference specification can be explained by a 
certain types of faults, as explained below. We do not make 
the single-fault assumption, thus the difference between the 
implementation and the specification may be due to several 
occurrences of these types of faults.  
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Figure 1: An example of a Petri Net specification (left) 
and a Petri Net implementation (right) with several types of 
faults 

 
1. Missing output flow: a task does not produce the 

expected output, that is, does not put the expected token 
in a given place. In Figure 1, the specification (left) 
says that task T1 must produce an output into place 2. 

However, in the implementation (right), T1 fails do 
produce this output; this is a missing output flow fault.   

2. Missing input flow: a task does not require the 
availability of a token in a given place to fire. In Figure 
1, the specification (left) says that task T6 must take an 
input from place 5. However, in the implementation 
(right), T6 does not require this input; this is a missing 
input flow fault.   

3. Additional output flow: a task produces an output into 
an existing place, that is, places a token into that place 
while the specification does not require such output. In 
Figure 1, the specification (left) says that task T4 does 
not produce an output into place 5. However, in the 
implementation (right), T4 produces this output; this is 
an additional output flow fault.  

4. Additional input flow: a task requires the availability 
of a token in a given existing place while the 
specification does not require such a token. In Figure 1, 
the specification (left) says that task T4 does not require 
an input from place 3. However, in the implementation 
(right), T4 does require this input; this is an additional 
input fault.  

In the rest of the paper, we are interested only in faults 
that actually have an impact on the observable behavior of 
the system, that is, create a non equivalent Petri Net (in the 
sense of Definition 2). It may prevent a task to be executed 
when it should be executable, and/or make a task executable 
when it should not. It is clear that it is possible to have faults 
as defined here that create an equivalent system, either 
because they simply add onto existing constraints, or replace 
a situation by an equivalent one. 

We assume that none of these faults change the basic 
assumptions regarding the system under test. In particular, 
each task still has at least one dependency (with the initial 
state) and cannot fire on its own.  

When considering faults of additional output flows, new 
tokens may “appear” anywhere in the system every time a 
task is executed. This raises the question of 1-safeness of the 
faulty implementation. One may assume that the faulty 
implementation is no longer 1-safe, and thus a place can now 
hold more than one token. Or one may assume that the 
implementation is still 1-safe despite possible faults. Another 
approach is to assume that the implementation’s places 
cannot hold more than one token and thus one token can 
“overwrite” another. Finally, and this is our working 
assumption, one may assume that violation of 1-safeness in 
the system under test will raise an exception that we will 
catch, thus detecting the presence of a fault under test. 

III. TESTING 

A. Using the testing techniques for finite state machines 

In this section we consider the use of the testing 
techniques developed for state machines. We can transform 
any 1-safe Petri Net into a corresponding state machine 
where each marking of the Petri Net corresponds to a state of 
the state machine, and each transition of the Petri Net 
corresponds to a subset of the state transitions of the state 



machine. The state machine can be obtained by the classical 
marking graph construction method.  

 

Algorithm 1: FSM-based Testing 

1. From the initial marking, enumerate every possible 
marking that can be reached. Call E this set of markings. 

2. Create a finite state machine A having |E| states labeled 
by the elements of E and a transition between states if 
and only if in the Petri Net it is possible to go from the 
marking corresponding to the source state to the marking 
corresponding to the target state by firing one a task. 
Label the FSM’s transition with this task. (An example of 
this transformation is given in Figure 2).  

3. Generate a checking sequence for A using one of the well 
known techniques of checking sequence construction for 
finite state machines [1].  

4. For each recognized state of the implementation, verify 
that no task is enabled that should not be enabled (by 
driving the implementation into that state and listing the 
tasks that are enabled) 

 
 

 

Figure 2: A simple Petri Net and the corresponding finite 
state machine 

 
Algorithm 1 will produce an exhaustive verification of the 
implementation.  
 

Proposition 3: Under the assumption that the number of 
markings for the implementation is not larger than for the 
specification, Algorithm 1 detects every possible 
combination of faults (in the fault model) resulting in an 
implementation that is not equivalent to the specification. 

 
Proof: If a combination of faults results in a non-equivalent 
implementation, this means that one of the following cases 
occurs: 
1. A given marking of the specification cannot be reached 

in the implementation. This will be caught by the state 
recognition portion of the checking sequence algorithm. 

2. From a given marking, a task that should be enabled is 
not, or it is enabled but executing it leads to the wrong 
marking. This will be caught by the transition 
verification portion of the checking sequence algorithm. 

3. From a given marking, a task that should not be 
enabled, is. This is typically not tested by checking 
sequences algorithms, but this problem will be detected 
by Step 4 of Figure 2. Indeed, in our settings, we are 
able to list all tasks enabled in a given marking. The 
checking sequence algorithm will give us a means to 
know how to put the implementation into a state 
corresponding to a given marking of the specification, 
thus Step 4 will detect any addition transition. 

 
Unfortunately, the number of markings may be 

exponentially larger than the size of the original Petri Net. In 
the following, we consider situations where more efficient 
testing methods can be used. 

 

B. Testing free-choice Petri nets for missing flow faults 

In some cases, it is possible to have more efficient testing 
algorithms. One such case is when the only possible faults 
are of type missing flow, that is, missing input flow or 
missing output flow in a free-choice Petri net. In this case, it 
is possible to check each input and output flow individually.  

Intuitively, the principles are the following: for detecting 
a missing input flow, we note that a task T normally requires 
all of its inputs to be marked to be enabled. For example, in 
Figure 3, left, the task T is not enabled because even though 
places (T)\p are all marked, place p is not. However, if the 
input flow from p to T is missing in the implementation 
(center), then is the same situation, with places (T)\p 
marked but place p not marked, T becomes enabled. The 
testing algorithm will thus, for all tasks T and all places p in 
T, mark all places in (T)\p and check if T is enabled. 
However, as shown in Figure 3 (right), in some case the 
missing input flow may not be detected; this may happen 
when at least one place p’ in (T)\p was not successfully 
marked, because of some other (missing output) faults in the 
implementation.  

 
 

 

Figure 3: Missing input flow. When (T)\p are marked 
but not p, T is not enabled in the specification (left), but it is 
enabled in the implementation (center); however, some 
additional faults may interfere (right). 

 
The idea for testing for missing output flows is the 

following: if a task T outputs a token into a place p, and a 
task T’ requires an input from p to be enabled, then marking 
all the places in (T’) by executing T to mark p (among other 



transitions) will enable T’ (Figure 4, left). If T is missing the 
output flow towards p, then T’ will not be enabled after 
attempting to mark all the places in (T’) because p will not 
actually be marked (Figure 4, center). Again, the situation 
can be complicated by another fault, such as a missing input 
flow between p and T’, in which case T’ will be enabled 
despite the missing output (Figure 4, right).  

 
 

 

Figure 4: Missing output flow. Correct situation (left), 
missing output flow of T (center), and interference by a 
missing input flow to T’. 

 
The problems of the interference between several faults, 

as indicated in the right of Figure 3 and Figure 4, will be 
addressed indirectly by the proof of Proposition 4 which will 
show that the verification for missing input might fail 
because of another missing output, and the verification for 
missing output might fail because of a missing input, but 
they cannot both fail at the same time. 

Formally, the algorithm for testing for missing input 
flows is the following: 

 

Algorithm 2: Testing for missing input flows  

1. For all task T  
2.      For all place p in (T) 
3.           If there is a trace S that marks (T)\p but not p 
4.                Reset the system and execute S 
5.                Verify NOT-ENABLED(T) 
 

The runtime of Algorithm 2 is clearly polynomial in 
respect to the size of the given Petri Net. As we will see in 
the proof of Proposition 4, this algorithm is not sufficient on 
its own, since it can miss some missing input flows, when 
combined with missing output flows. It must be run in 
combination with Algorithm 3 which tests for missing output 
flows: 

 

Algorithm 3: Testing for missing output flows 

1. For all task T  
2.      For all place p in (T) 
3.           For all task T’ in (p) 
4.                If there is trace S that contains T and  

      marks (T’) 
5.                     Reset the system and execute S 
6.                     Verify ENABLED(T’) 
 

It is also clear that the runtime of Algorithm 3 is 
polynomial in respect to the size of the given Petri Net. 

Proposition 4 shows that running both algorithms is enough 
to detect all missing flow faults in the absence of other types 
of faults. To guarantee the detection of these faults, we must 
assume that the implementation only contains faults of these 
types.  

 

Proposition 4: Executing both Algorithm 2 and 3 will 
detects any faulty implementation of a free-choice Petri net 
specification that has only missing input and/or output flow 
faults. 

Proof: If an implementation is not faulty, then clearly 
neither algorithm will detect a fault.  
Assume that there is a task T with a missing input flow from 
a place p. If there is no trace S that marks (T)\p but not p, 
then Proposition 1 shows that the input flow is unnecessary 
and the resulting Petri Net is in fact equivalent to the 
original one. We therefore assume that there is such a trace 
S. If after executing S successfully (T)\p is indeed marked, 
then T will be enabled and the algorithm will detect the 
missing input constraint. If after executing S T is not 
enabled, that means that (T)\p is in fact not marked. The 
problem cannot be another missing input for T, since it 
would mean fewer constraints on S, not more, and wouldn’t 
prevent T to be enabled.  Thus, the only remaining option is 
that some task T’ in ((T)\p) did not mark the expected 
place in (T)\p when executing S, that is, T’ has a missing 
output flow. In conclusion, Algorithm 2 detects missing 
input flows, except when the task missing the input 
constraint has another input flow which is not missing but 
for which the task that was to put the token has a missing 
output flow. 
Assume now that there is a task T with a missing output flow 
to a place p. If this output flow is not redundant, then there 
is a task T’ that has p as an input flow and that will 
consume the token placed there by T. Such a T’ will be 
found by Algorithm 3. Because of the missing output flow, 
normally T’ will not be enabled after executing S and the 
algorithm will catch the missing flow. However, it is still 
possible for T’ to be enabled, if it is missing the input flow 
from p, too. In conclusion, Algorithm 3 detects missing 
output flow, except when the missing output flow is to a 
place that has an input flow that is missing too. 

To conclude this proof, we need to point out that each 
algorithm works, except in one situation; but the situation 
that defaults Algorithm 2 is different from the one that 
defaults Algorithm 3. In the case of Algorithm 3, we need a 
place that has lost both an input and an output flow, while in 
the case of Algorithm 2, we need a place that has lost an 
output flow but must have kept its input flow. Thus, by 
running both algorithms, we are guarantied to detect all 
problems, Algorithm 3 catching the problems missed by 
Algorithm 2, and vice versa. 

 



C. Testing for additional constraint faults 

Testing for additional flow faults is more difficult than 
testing for missing flow faults because it may involve tasks 
that are independent of each other according to the 
specification. Moreover, the consequence of this type of 
faults can be intermittent, in that an additional output flow 
fault may be cancelled by an additional input flow fault, 
leaving only a short window of opportunity (during the 
execution of the test trace) to detect the fault. In the case of 
additional input flow faults without other types of faults, we 
can still propose a polynomial algorithm, but we cannot 
check for additional output flow faults in polynomial time, 
even if no other types of faults are present. 

 
1) Testing for additional input flow faults 

 
An additional input flow fault can have two different 

effects: it may prevent a task from being executed when it 
should be executable according to the specification, because 
the task expects an input that was not specified, or it may 
prevent some other task from executing because the task 
with the additional input flow has unexpectedly consumed 
the token. Figure 5 illustrates the situation: task T has an 
additional input flow from place p (left). In the case where 
T is marked, but p is not (center), T is not enabled, although 
it should. If p is marked too (right), then T can fire, but then 
T’ cannot anymore, even though it should be enabled. 

 
 

 

Figure 5: Additional input flow fault: T has an additional 
input flow from p (left). This may prevent T from firing 
(center), or, when T fires, T’ becomes disabled (right). 

 
A more general description is illustrated in Figure 6: in 

order to mark T, some trace is executed (the dashed zone in 
the figure). While producing this trace, some other places 
will also become marked (for example p’) while other places 
are unmarked (for example p). This normal situation is 
shown on the left. If T has an additional input constraint from 
p (center), then after executing the same trace, the faulty T 
will not be enabled. If T has an additional input constraint 
from p’ (right), then the faulty T is still marked after 
generating the trace, so T is enabled, however, if it fires it 
will disable T’. 
 

 

Figure 6: Additional input flow fault (see explanation 
above)  

 
Consequently, in order to detect these faults, in the 

absence of any other type of faults, we use an algorithm that 
works in two phases: first, a trace is executed that should 
mark T and verifies that T is indeed enabled. This shows 
that either T does not have an additional input constraint, or 
that the additional input place happens to be marked as well.  
So the second phase checks that the places that are marked 
by this trace (and that are not part of T) are not being 
unmarked by the firing of T. 

Algorithm 4 gives the details. 

 

Algorithm 4: Testing for additional input flows  

1. For all task T  
2.      Find a trace S that marks T 
3.      Reset the system and execute S 
4.      Verify ENABLED(T) 
5.      For all place p not in T which is marked by S  
6.           If there is a trace S’ containing T and  

another task T’ in p (TT’) 
7.                Reset the system and verify that S’ can be  

executed 
8.          Else if there is a trace S marking T but not p 
9.                Reset the system and execute S 
10.                Verify ENABLED(T) 
 

Proposition 5: Executing 

Algorithm 4 will detect any faulty implementation of a free-
choice Petri net specification that has only additional input 
flow faults. 

Proof: If a task T has an additional input from a place p 
and that fault it not caught at line 4, it necessarily means 
that p is marked by trace S, and expected to be so because 
we consider only additional input flow faults. Such a case 
will be dealt with by lines 5 through 10.  If the fault has an 
impact (i.e. if it leads to a wrong behavior of the 
implementation), then there must be a task T’ in p and a 
trace containing both T and T’ that is executable according 
to the specification but not in the implementation. Again, 
because we consider only additional input flow faults, any 
trace containing both T and T’ will fail, since when the 
second task is executed, the token in p has already been 
consumed as often as it has been set, thus the second task 



will not be enabled. Lines 6 and 7 of the algorithm ensure 
that such a trace will be found and run, therefore a fault 
with an impact when p is marked will be caught. Finally, the 
fault might have no impact when p is marked, but if there is 
another way to enable T without marking p, via some trace 
S then T would not be enabled when S is executed. Line 9 
and 10 of the algorithm address this case. 

IV. CONCLUSION  

In this paper, we look at the question of conformance 
testing when the model is provided in the form of a 1-safe 
Petri Net. We first provide a general framework for testing 
whether an implementation conforms to a specification 
which is given in the form of a 1-safe Petri Nets. The types 
of errors that we consider in this paper include faults of 
missing or additional flows (inputs to, or outputs from 
transitions). We provide a general, but inefficient algorithm 
for testing these faults, derived from methods originally 
developed for FSMs. We then identify special types of faults 
for which polynomial testing algorithms can be provided. 

 
2) Testing for additional output flow faults 

 
The fault of an additional output flow to an existing place 

might enable a task when that task should not be enabled. 
Detecting this type of faults is more difficult than additional 
input flows, and we cannot do it in polynomial time even in 
the absence of other types of fault. 

This paper is an initial step towards a fully developed 
Petri Net testing. 
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