
On Testing 1-Safe Petri Nets

Guy-Vincent Jourdan, Gregor v. Bochmann
School of Information Technology and Engineering (SITE)

University of Ottawa
800 King Edward Avenue, Ottawa, Ontario, Canada, K1N 6N5

{gvj, bochmann}@site.uottawa.ca

Abstract—Formal models are often considered for software
systems specification, and are helpful for verifying that certain
properties are respected, or for automatically generating the
implementation code corresponding to the model, or again for
conformance testing, for the automatic generation of test cases
to check an implementation against the formal specification.
Variations of Finite State Machine (FSM) models have been
mostly used for conformance testing, while the otherwise very
popular formal model of Petri Nets is seldom mentioned in this
context. In this paper, we look at the question of conformance
testing when the model is provided in the form of a 1-safe Petri
Net. We provide a general framework for conformance testing,
and give algorithms for deriving test cases under different
assumptions: Besides the adaptation of methods originally
developed for FSMs which lead to exponentially long test
sequences, we have identified cases for which polynomial
testing algorithms for free-choice Petri nets can be provided.
These results are significant when modeling concurrent
systems, as exemplified by workflow modeling.

Conformance testing, fault model, 1-safe Petri nets, free-
choice Petri nets, automatic test generation

I. INTRODUCTION

Software systems are notoriously incorrect, a problem
that only gets worst when dealing with distributed systems.
In order to help producing better systems, one common
suggestion is to create a formal model of the specification of
the system, and then test whether a given implementation
conforms to the specification, for some suitable definition of
conformance. Ideally the tests are automatically generated
based on the formal specification. This kind of approach has
been mostly researched using Finite State Machines (FSM)
as the formal model (see e.g. [1] for a survey). More
recently, the same questions have been asked for concurrent
systems, for which FSM do not offer a good model. When
modeling concurrent systems with FSMs for test generations,
multi-ports FSM [2,3] and Partial Order Input/Output
Automata [4] have been used. When modelling concurrent
systems in general, a popular formalism among researchers
are Petri Nets (see e.g. [5] for a survey). Surprisingly, little
has been done in the area of conformance testing of systems
specified as Petri Nets, even through Petri Nets have long
been used in practice and have for example influenced the
design of some UML schema and have been used as a basis
for workflow modeling [6]. Other formalisms beside the
already mentioned FSMs have been used in the context of
testing distributed systems (for example for Labeled

Transition Systems [7] or Message Sequence Charts [8]), but
in this context Petri Nets have mostly been used for fault
diagnosis (see e.g. [9]). An interesting classification of
testing criteria for Petri nets was provided by Zhu and He
[10], but without testing algorithms.

In this paper, we investigate the question of automatically
testing Petri Nets, to ensure that an implementation of a
specification provided as a Petri Net is correct. We focus on
1-safe Petri Nets, that is, Petri Net for which a place never
holds more that one token, and on free-choice Petri Nets.
This model is well suited for workflows [6], which is our
target application. Thus, the traditional transitions of Petri
Nets are seen as tasks of a workflow. In this context, we
provide a precise fault model, capturing what kind of
changes could make a candidate implementation not
conforming to the specification: some of the specified flow
constraints between the tasks may be missing, or some
unspecified flow constraints between tasks may be added.
free-choice Petri nets are also useful to model for example
flows in networks of processors [11]. We provide a precise
framework for the conformance question in Section II C. We
then provide our main results, our testing algorithms, in
Section III. We first show that testing Petri Nets can be
reformulated as a special case of FSM testing. This approach
makes sense since FSM testing has been so extensively
studied. Unfortunately, the complexity of the transformation
of a Petri Net into an FSM is exponential in the worst case.
We then study some particular cases for 1-safe free-choice
Petri nets, for which a polynomial testing algorithm can be
proposed. In Section III B., we provide a polynomial-time
algorithm to test implementations that have only missing
flow constraints between tasks. We also provide a
polynomial-time algorithm for testing implementations with
only additional input flows between tasks in Section III C. 1).
We show in Section III C. 2) that the problem is more
difficult for additional output flows. We conclude in Section
IV. The basic concepts and definitions are introduced in
Section II.

II. BASIC CONCEPTS AND ASSUMPTIONS

In this section, we give the definition of Petri Nets and
we explain the assumptions that we make about testing
environment.

A. Petri nets

Definition 1: Petri Nets, input/outputs, traces, executable
sets, markings. A Petri Net is a 4-tuple N=(P,T,F,M0)
where P is a finite set of places, T is a finite set of
transitions (or tasks in our context), F (PT)(TP) is a
set of arcs (the flows in our context). A marking is a
mapping from P to the natural numbers, indicating the
number of tokens in each place. We write M0 for the initial
marking of the net. For a task tT, we note
t={pP|(p,t)F} the set of inputs of t, and
t={pP|(t,p)F} the set of outputs of t. Similarly, for a
place pP, we note p={tT|(t,p)F} and
p={tT|(p,t)F}.
A task t is enabled for execution if all inputs of t contain at
least one token. When a task is executed the marking
changes as follows: The number of tokens in all inputs of t
decreases by one, and the number of tokens in all outputs of
t increases by one. A trace of a Petri Net is a sequence of
tasks that can be executed starting from the initial marking
in the order indicated, without executing any other tasks. An
executable set of tasks is a multiset of tasks whose task
elements can be sequenced into a trace. Clearly, for each
trace there is a unique executable set, but several traces may
correspond to the same executable set, in which case we say
that the traces are equivalent. A marking of a trace t is the
marking obtained after the execution of t from the initial
marking. We say that t marks P if the place P contains at
least one token in the marking of t.

Definition 2: Petri Net equivalence. Two Petri Nets
PN1=(P1,T1,F1,M10) and PN2=(P2,T2,F2,M20) are said to be
equivalent if ,T1 =T2 and they have the same set of traces.

Definition 3: Free-choice Petri Nets. A Petri Net
PN=(P,T,F,M0) is free-choice if and only if for all places p
in P, we have either | p| < 2 or ((p)) = {p}.

Definition 4: 1-Safeness (k-safeness). A marking of a Petri
Net is 1-safe (resp. k-safe) if the number of tokens in all
places is at most one (resp. k). A Petri Net is k-safe if the
initial marking is k-safe and the marking of all traces is k-
safe. (Note: We consider in this paper only 1-safe Petri
Nets).

Proposition 1: In a 1-safe free-choice Petri Net
PN=(P,T,F,M0), if for some task tT and some place pP
such that pt and |t|>1, there is no trace that marks (t)\p
but not p then removing the input (p,t) from F defines a
Petri Net PN’ which is equivalent to PN.

Proof: Let PN=(P,T,F,M0) be a 1-safe free-choice Petri
Net, let tT be a task of PN and pP a place of PN such
that p is in t, |t|>1 and there is no trace of PN that
marks (t)\p but not p. Let PN’ be the Petri Net obtained by
removing (p,t) from F in PN. We show that PN’ is
equivalent to PN. Suppose they were not equivalent, that is,

PN and PN’ do not have the same set of traces. Since we
have only removed a constraint from PN, clearly every trace
of PN is also a trace of PN’, therefore PN’ must accept
traces that are not accepted by PN. Let Tr be such a trace.
Since the only difference between PN and PN’ is fewer input
flows on t in PN’, necessarily t is in Tr. Two situations
might occur: either Tr is not a trace of PN because an
occurrence of t cannot fire in PN (i.e. t is not marked at
that point in PN), or another task t’ can fire in PN’ but not
in PN. In the former case, because we have only removed
(p,t), it mean that (t)\p is marked but t is not, a
contradiction with the hypothesis. In the latter case, if t’ can
fire in PN’ but not in PN then t’ must be marked in PN’
and not in PN. Again, the only difference being t not
consuming a token in p in PN’, it follows that t’ can use that
token in PN’ but not in PN. In other words, pt’, but then
|p|>1 and thus (p) = {p} (PN is free-choice), a
contradiction with |t|>1.

Proposition 2: In a 1-safe Petri Net PN=(P,T,F,M0), for
any tasks t, t’T and for any place pP such that pt and
pt’, if there is a trace Tr of PN containing both t and t’,
with t occurring before t’ in Tr, then there is a task t″T in
Tr (possibly t″ = t’) that consumes the token put in p by t.

Proof: (immediate from the definition) When Tr comes to
executing t’, if the token that must be present in p is not the
one put there by t then, because of 1-safety, necessarily the
token put by t has already been consumed by some task t″.

B. Assumptions about the specification, implementation
and testing environment

We assume that the specification of the system under test
is provided in the form of a 1-safe Petri Net. Moreover, we
assume that there is a well identified initial marking (initial
state). The goal of our test is to establish the conformance of
the implementation to the specification, in the sense of trace
equivalence defined in Definition 2.

For the system under test, we make the assumption that
can be modeled as a 1-safe Petri Net. In addition, we make
one of the following assumptions: (a) that the number of
reachable markings in the implementation is not larger than
in the specification, or (b) that the number of transitions
(tasks) in the implementation is not larger than in the
specification. Assumption (a) corresponds to a similar
restriction commonly made for conformance testing in
respect to specifications in the form of state machines, where
one assumes that the number of states of the implementation
is not larger than the number of states of the specification.
Without such an assumption, one would not be sure that the
implementation is completely tested, since some of the
(implementation) states might not have been visited. If one
wants to avoid this assumption, it is possible to assume that
the number of markings in the implementation does not
exceed the number of markings in the specification by more
than some upper bound k, however, we do not address this
question in this paper.

Regarding the testing environment, we assume that the
system under test provides an interface which provides the
following functions:

 At any time, the tester can determine which
transitions are enabled.

 The tester can trigger an enabled transition at will.
Moreover, transitions will only be executed when
triggered through the interface.

 There is a reliable reset, which bring the system
under test into what corresponds to the initial
marking.

A good example of applications compatible with these

assumptions are Workflow Engines. Workflow processes are
usually specified by some specification language closely
related to Petri Nets. Workflow engines are used to specify
(and then enforce) the flow of tasks that are possible or
required to perform for a given activity. In that setting, the
set of possible tasks is well known, and a given task can be
initiated if and only if the set of tasks that directly precede
are finished. In a computer system, it typically means that at
any time, the set of tasks that can be performed are enabled
(accessible from the user interface) while the tasks that
cannot be performed are not visible. It is thus possible to
know what tasks are enabled, and choose one of them to be
performed. In [6], workflow are modeled using 1-safe Petri
nets.

C. Fault Model

We assume that the difference between the system under
test and the reference specification can be explained by a
certain types of faults, as explained below. We do not make
the single-fault assumption, thus the difference between the
implementation and the specification may be due to several
occurrences of these types of faults.

T1 T2

T6

2

1

T3 T4

4 5

T5

3

T1 T2

T6

2

1

T3 T4

4 5

T5

3

6

Additional constraint
Missing constraint

Additional place

Figure 1: An example of a Petri Net specification (left)
and a Petri Net implementation (right) with several types of
faults

1. Missing output flow: a task does not produce the

expected output, that is, does not put the expected token
in a given place. In Figure 1, the specification (left)
says that task T1 must produce an output into place 2.

However, in the implementation (right), T1 fails do
produce this output; this is a missing output flow fault.

2. Missing input flow: a task does not require the
availability of a token in a given place to fire. In Figure
1, the specification (left) says that task T6 must take an
input from place 5. However, in the implementation
(right), T6 does not require this input; this is a missing
input flow fault.

3. Additional output flow: a task produces an output into
an existing place, that is, places a token into that place
while the specification does not require such output. In
Figure 1, the specification (left) says that task T4 does
not produce an output into place 5. However, in the
implementation (right), T4 produces this output; this is
an additional output flow fault.

4. Additional input flow: a task requires the availability
of a token in a given existing place while the
specification does not require such a token. In Figure 1,
the specification (left) says that task T4 does not require
an input from place 3. However, in the implementation
(right), T4 does require this input; this is an additional
input fault.

In the rest of the paper, we are interested only in faults
that actually have an impact on the observable behavior of
the system, that is, create a non equivalent Petri Net (in the
sense of Definition 2). It may prevent a task to be executed
when it should be executable, and/or make a task executable
when it should not. It is clear that it is possible to have faults
as defined here that create an equivalent system, either
because they simply add onto existing constraints, or replace
a situation by an equivalent one.

We assume that none of these faults change the basic
assumptions regarding the system under test. In particular,
each task still has at least one dependency (with the initial
state) and cannot fire on its own.

When considering faults of additional output flows, new
tokens may “appear” anywhere in the system every time a
task is executed. This raises the question of 1-safeness of the
faulty implementation. One may assume that the faulty
implementation is no longer 1-safe, and thus a place can now
hold more than one token. Or one may assume that the
implementation is still 1-safe despite possible faults. Another
approach is to assume that the implementation’s places
cannot hold more than one token and thus one token can
“overwrite” another. Finally, and this is our working
assumption, one may assume that violation of 1-safeness in
the system under test will raise an exception that we will
catch, thus detecting the presence of a fault under test.

III. TESTING

A. Using the testing techniques for finite state machines

In this section we consider the use of the testing
techniques developed for state machines. We can transform
any 1-safe Petri Net into a corresponding state machine
where each marking of the Petri Net corresponds to a state of
the state machine, and each transition of the Petri Net
corresponds to a subset of the state transitions of the state

machine. The state machine can be obtained by the classical
marking graph construction method.

Algorithm 1: FSM-based Testing

1. From the initial marking, enumerate every possible
marking that can be reached. Call E this set of markings.

2. Create a finite state machine A having |E| states labeled
by the elements of E and a transition between states if
and only if in the Petri Net it is possible to go from the
marking corresponding to the source state to the marking
corresponding to the target state by firing one a task.
Label the FSM’s transition with this task. (An example of
this transformation is given in Figure 2).

3. Generate a checking sequence for A using one of the well
known techniques of checking sequence construction for
finite state machines [1].

4. For each recognized state of the implementation, verify
that no task is enabled that should not be enabled (by
driving the implementation into that state and listing the
tasks that are enabled)

Figure 2: A simple Petri Net and the corresponding finite
state machine

Algorithm 1 will produce an exhaustive verification of the
implementation.

Proposition 3: Under the assumption that the number of
markings for the implementation is not larger than for the
specification, Algorithm 1 detects every possible
combination of faults (in the fault model) resulting in an
implementation that is not equivalent to the specification.

Proof: If a combination of faults results in a non-equivalent
implementation, this means that one of the following cases
occurs:
1. A given marking of the specification cannot be reached

in the implementation. This will be caught by the state
recognition portion of the checking sequence algorithm.

2. From a given marking, a task that should be enabled is
not, or it is enabled but executing it leads to the wrong
marking. This will be caught by the transition
verification portion of the checking sequence algorithm.

3. From a given marking, a task that should not be
enabled, is. This is typically not tested by checking
sequences algorithms, but this problem will be detected
by Step 4 of Figure 2. Indeed, in our settings, we are
able to list all tasks enabled in a given marking. The
checking sequence algorithm will give us a means to
know how to put the implementation into a state
corresponding to a given marking of the specification,
thus Step 4 will detect any addition transition.

Unfortunately, the number of markings may be

exponentially larger than the size of the original Petri Net. In
the following, we consider situations where more efficient
testing methods can be used.

B. Testing free-choice Petri nets for missing flow faults

In some cases, it is possible to have more efficient testing
algorithms. One such case is when the only possible faults
are of type missing flow, that is, missing input flow or
missing output flow in a free-choice Petri net. In this case, it
is possible to check each input and output flow individually.

Intuitively, the principles are the following: for detecting
a missing input flow, we note that a task T normally requires
all of its inputs to be marked to be enabled. For example, in
Figure 3, left, the task T is not enabled because even though
places (T)\p are all marked, place p is not. However, if the
input flow from p to T is missing in the implementation
(center), then is the same situation, with places (T)\p
marked but place p not marked, T becomes enabled. The
testing algorithm will thus, for all tasks T and all places p in
T, mark all places in (T)\p and check if T is enabled.
However, as shown in Figure 3 (right), in some case the
missing input flow may not be detected; this may happen
when at least one place p’ in (T)\p was not successfully
marked, because of some other (missing output) faults in the
implementation.

Figure 3: Missing input flow. When (T)\p are marked
but not p, T is not enabled in the specification (left), but it is
enabled in the implementation (center); however, some
additional faults may interfere (right).

The idea for testing for missing output flows is the

following: if a task T outputs a token into a place p, and a
task T’ requires an input from p to be enabled, then marking
all the places in (T’) by executing T to mark p (among other

transitions) will enable T’ (Figure 4, left). If T is missing the
output flow towards p, then T’ will not be enabled after
attempting to mark all the places in (T’) because p will not
actually be marked (Figure 4, center). Again, the situation
can be complicated by another fault, such as a missing input
flow between p and T’, in which case T’ will be enabled
despite the missing output (Figure 4, right).

Figure 4: Missing output flow. Correct situation (left),
missing output flow of T (center), and interference by a
missing input flow to T’.

The problems of the interference between several faults,

as indicated in the right of Figure 3 and Figure 4, will be
addressed indirectly by the proof of Proposition 4 which will
show that the verification for missing input might fail
because of another missing output, and the verification for
missing output might fail because of a missing input, but
they cannot both fail at the same time.

Formally, the algorithm for testing for missing input
flows is the following:

Algorithm 2: Testing for missing input flows

1. For all task T
2. For all place p in (T)
3. If there is a trace S that marks (T)\p but not p
4. Reset the system and execute S
5. Verify NOT-ENABLED(T)

The runtime of Algorithm 2 is clearly polynomial in
respect to the size of the given Petri Net. As we will see in
the proof of Proposition 4, this algorithm is not sufficient on
its own, since it can miss some missing input flows, when
combined with missing output flows. It must be run in
combination with Algorithm 3 which tests for missing output
flows:

Algorithm 3: Testing for missing output flows

1. For all task T
2. For all place p in (T)
3. For all task T’ in (p)
4. If there is trace S that contains T and

 marks (T’)
5. Reset the system and execute S
6. Verify ENABLED(T’)

It is also clear that the runtime of Algorithm 3 is
polynomial in respect to the size of the given Petri Net.

Proposition 4 shows that running both algorithms is enough
to detect all missing flow faults in the absence of other types
of faults. To guarantee the detection of these faults, we must
assume that the implementation only contains faults of these
types.

Proposition 4: Executing both Algorithm 2 and 3 will
detects any faulty implementation of a free-choice Petri net
specification that has only missing input and/or output flow
faults.

Proof: If an implementation is not faulty, then clearly
neither algorithm will detect a fault.
Assume that there is a task T with a missing input flow from
a place p. If there is no trace S that marks (T)\p but not p,
then Proposition 1 shows that the input flow is unnecessary
and the resulting Petri Net is in fact equivalent to the
original one. We therefore assume that there is such a trace
S. If after executing S successfully (T)\p is indeed marked,
then T will be enabled and the algorithm will detect the
missing input constraint. If after executing S T is not
enabled, that means that (T)\p is in fact not marked. The
problem cannot be another missing input for T, since it
would mean fewer constraints on S, not more, and wouldn’t
prevent T to be enabled. Thus, the only remaining option is
that some task T’ in ((T)\p) did not mark the expected
place in (T)\p when executing S, that is, T’ has a missing
output flow. In conclusion, Algorithm 2 detects missing
input flows, except when the task missing the input
constraint has another input flow which is not missing but
for which the task that was to put the token has a missing
output flow.
Assume now that there is a task T with a missing output flow
to a place p. If this output flow is not redundant, then there
is a task T’ that has p as an input flow and that will
consume the token placed there by T. Such a T’ will be
found by Algorithm 3. Because of the missing output flow,
normally T’ will not be enabled after executing S and the
algorithm will catch the missing flow. However, it is still
possible for T’ to be enabled, if it is missing the input flow
from p, too. In conclusion, Algorithm 3 detects missing
output flow, except when the missing output flow is to a
place that has an input flow that is missing too.

To conclude this proof, we need to point out that each
algorithm works, except in one situation; but the situation
that defaults Algorithm 2 is different from the one that
defaults Algorithm 3. In the case of Algorithm 3, we need a
place that has lost both an input and an output flow, while in
the case of Algorithm 2, we need a place that has lost an
output flow but must have kept its input flow. Thus, by
running both algorithms, we are guarantied to detect all
problems, Algorithm 3 catching the problems missed by
Algorithm 2, and vice versa.

C. Testing for additional constraint faults

Testing for additional flow faults is more difficult than
testing for missing flow faults because it may involve tasks
that are independent of each other according to the
specification. Moreover, the consequence of this type of
faults can be intermittent, in that an additional output flow
fault may be cancelled by an additional input flow fault,
leaving only a short window of opportunity (during the
execution of the test trace) to detect the fault. In the case of
additional input flow faults without other types of faults, we
can still propose a polynomial algorithm, but we cannot
check for additional output flow faults in polynomial time,
even if no other types of faults are present.

1) Testing for additional input flow faults

An additional input flow fault can have two different

effects: it may prevent a task from being executed when it
should be executable according to the specification, because
the task expects an input that was not specified, or it may
prevent some other task from executing because the task
with the additional input flow has unexpectedly consumed
the token. Figure 5 illustrates the situation: task T has an
additional input flow from place p (left). In the case where
T is marked, but p is not (center), T is not enabled, although
it should. If p is marked too (right), then T can fire, but then
T’ cannot anymore, even though it should be enabled.

Figure 5: Additional input flow fault: T has an additional
input flow from p (left). This may prevent T from firing
(center), or, when T fires, T’ becomes disabled (right).

A more general description is illustrated in Figure 6: in

order to mark T, some trace is executed (the dashed zone in
the figure). While producing this trace, some other places
will also become marked (for example p’) while other places
are unmarked (for example p). This normal situation is
shown on the left. If T has an additional input constraint from
p (center), then after executing the same trace, the faulty T
will not be enabled. If T has an additional input constraint
from p’ (right), then the faulty T is still marked after
generating the trace, so T is enabled, however, if it fires it
will disable T’.

Figure 6: Additional input flow fault (see explanation
above)

Consequently, in order to detect these faults, in the

absence of any other type of faults, we use an algorithm that
works in two phases: first, a trace is executed that should
mark T and verifies that T is indeed enabled. This shows
that either T does not have an additional input constraint, or
that the additional input place happens to be marked as well.
So the second phase checks that the places that are marked
by this trace (and that are not part of T) are not being
unmarked by the firing of T.

Algorithm 4 gives the details.

Algorithm 4: Testing for additional input flows

1. For all task T
2. Find a trace S that marks T
3. Reset the system and execute S
4. Verify ENABLED(T)
5. For all place p not in T which is marked by S
6. If there is a trace S’ containing T and

another task T’ in p (TT’)
7. Reset the system and verify that S’ can be

executed
8. Else if there is a trace S marking T but not p
9. Reset the system and execute S
10. Verify ENABLED(T)

Proposition 5: Executing

Algorithm 4 will detect any faulty implementation of a free-
choice Petri net specification that has only additional input
flow faults.

Proof: If a task T has an additional input from a place p
and that fault it not caught at line 4, it necessarily means
that p is marked by trace S, and expected to be so because
we consider only additional input flow faults. Such a case
will be dealt with by lines 5 through 10. If the fault has an
impact (i.e. if it leads to a wrong behavior of the
implementation), then there must be a task T’ in p and a
trace containing both T and T’ that is executable according
to the specification but not in the implementation. Again,
because we consider only additional input flow faults, any
trace containing both T and T’ will fail, since when the
second task is executed, the token in p has already been
consumed as often as it has been set, thus the second task

will not be enabled. Lines 6 and 7 of the algorithm ensure
that such a trace will be found and run, therefore a fault
with an impact when p is marked will be caught. Finally, the
fault might have no impact when p is marked, but if there is
another way to enable T without marking p, via some trace
S then T would not be enabled when S is executed. Line 9
and 10 of the algorithm address this case.

IV. CONCLUSION

In this paper, we look at the question of conformance
testing when the model is provided in the form of a 1-safe
Petri Net. We first provide a general framework for testing
whether an implementation conforms to a specification
which is given in the form of a 1-safe Petri Nets. The types
of errors that we consider in this paper include faults of
missing or additional flows (inputs to, or outputs from
transitions). We provide a general, but inefficient algorithm
for testing these faults, derived from methods originally
developed for FSMs. We then identify special types of faults
for which polynomial testing algorithms can be provided.

2) Testing for additional output flow faults

The fault of an additional output flow to an existing place

might enable a task when that task should not be enabled.
Detecting this type of faults is more difficult than additional
input flows, and we cannot do it in polynomial time even in
the absence of other types of fault.

This paper is an initial step towards a fully developed
Petri Net testing.

ACKNOWLEDGMENT
This work has been supported in part by grants from the

Natural Sciences and Engineering Research Council of
Canada.

REFERENCES

[1] Lee D, Yannakakis M (1996) Principles and methods of testing finite

state machines – a survey. Proceedings of the IEEE, 84(8):1089–
1123.

[2] G. Luo, R. Dssouli, G. v. Bochmann, P. Ventakaram and A.
Ghedamsi, Generating synchronizable test sequences based on finite
state machines with distributed ports, IFIP Sixth International
Workshop on Protocol Test Systems, Pau, France, September 1993,
pp. 53-68.

[3] J. Chen, R. Hieron and H. Ural, Resolving observability problems in
distributed test architecture, FORTE 2005, LNCS 3731, 2005, pp.
219-232. Figure 7: Additional output flow faults: the additional

output flows from T3 to p and from T5 to p’ can be detected
only if these two transitions are included in the trace

[4] G. v. Bochmann, S. Haar, C. Jard and G.-V. Jourdan, Testing
Systems Specified as Partial Order Input/Output Automata. TestCom
2008, LNCS 5047, pages 169-183, Springer 2008.

 [5] T. Murata (1989) Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4): 541–580. When considering additional output flows, additional

tokens may be placed anywhere in the system every time a
task is executed. Thus, any trace may now mark any set of
places anywhere in the net, so we cannot have any strategy
beyond trying everything. This is illustrated in Figure 7, with
two additional output flows, one from T3 to p and one from
T5 to p’. Neither T3 nor T5 are prerequisite to T11, so to
exhibit the problem requires executing tasks that are
unrelated to the problem’s location, namely T3 and T5. Both
T3 and T5 are branching from a choice, and of the 4 possible
combinations of choices, there is only one combination that
leads to the detection of the problem. For detecting an
arbitrary set of additional output flow faults, it is therefore
necessary to execute traces for all possible combination of
choices.

[6] W. van der Aalst, T. Weijters, L. Maruster, (2004) Workflow mining:
discovering process models from event logs. IEEE Transactions on
Knowledge and Data Engineering, 16(9): 1128–1142.

[7] P. Bhateja, P. Gastin, and M. Mukund, A Fresh Look at Testing for
Asynchronous Communication. ATVA 2006, LNCS 4218, pages 369-
383, Springer 2006.

[8] P. Bhateja, P. Gastin, M. Mukund and K. Narayan Kumar, Local
Testing of Message Sequence Charts Is Difficult. Fundamentals of
Computation Theory, 2007, LNCS 4639, pages 76-87, Springer 2007.

[9] S. Haar (2008) Law and Partial Order. Nonsequential Behaviour and
Probability in Asynchronous Systems. Habilitation à diriger les
recherches, INRIA. http://www.lsv.ens-cachan.fr/~haar/HDR.pdf.

[10] H. Zhu and X. He, (2002)A methodology of testing high-level Petri
nets. Information and Software Technology, 44(8): 473-489

[11] J.Desel and J. Esparza (1995) Free choice Petri nets Cambridge
Tracts In Theoretical Computer Science; Vol. 40. ISBN:0-521-
46519-2. Because of these difficulties, we cannot suggest a

polynomial algorithm for these types of faults.

	I. Introduction
	II. Basic Concepts and Assumptions
	A. Petri nets
	B. Assumptions about the specification, implementation and testing environment
	C. Fault Model

	III. Testing
	A. Using the testing techniques for finite state machines
	B. Testing free-choice Petri nets for missing flow faults
	C. Testing for additional constraint faults
	1) Testing for additional input flow faults
	2) Testing for additional output flow faults

	IV. Conclusion
	Acknowledgment
	References

